Mobile Application for Improvement of Self-Management of Type 2 Diabetes: Usability Pilot Test

Autores da FMUP
Participantes de fora da FMUP
- Pinto, A
- Viana, J
Unidades de investigação
Abstract
We intend to evaluate the usability of a mobile app developed for the self-management of T2DM. A pilot usability cross-sectional study was performed with a convenience sample of 6 smartphone users aged 45 years. Participants performed tasks autonomously in a mobile app to assess if users could complete them and filled out a usability and satisfaction questionnaire. About half of the tasks had a successful completion rate. The result of the usability questionnaire was 64/100, below the acceptable value, but the satisfaction value was considered good. This study was fundamental as it allowed us to verify which improvements should be implemented in the next version of the app, contributing to its better acceptance.
Dados da publicação
- ISSN/ISSNe:
- 0926-9630, 1879-8365
- Tipo:
- Proceedings Paper
- Páginas:
- 492-493
- DOI:
- 10.3233/SHTI230186
Studies in Health Technology and Informatics IOS Press BV
Documentos
- Não há documentos
Filiações
Keywords
- Usability; tasks; mobile applications; Type 2 diabetes mellitus; T2DM
Financiamento
Proyectos asociados
Quality indicators in primary health care: validation and implementation of quality indicators as an assessment and comparison tool.
Investigador Principal: Paulo Alexandre Azevedo Pereira Santos
Estudo de Intervenção Académico (1st.IndiQare) . 2019
Stimulate continous monitoring in personal and physical health.
Investigador Principal: José Alberto da Silva Freitas
Estudo Observacional Académico (INNO4HEALTH) . FCT . 2021
Estudos de avaliação de exequibilidade, usabilidade e utilização de uma app para telemóvel para gestão da diabetes tipo 2.
Investigador Principal: José Alberto da Silva Freitas
Estudo Observacional Académico (FoodFriend) . FCT . 2022
COVID-19: Monitorizar e planear com base no risco.
Investigador Principal: Cristina Maria Nogueira da Costa Santos
Estudo Observacional Académico (COVID-19) . 2020
COVID-19 in portuguese non-hospitalized patients: evolution, burden of comorbidities and other determinants for severity.
Investigador Principal: Paulo Alexandre Azevedo Pereira Santos
Estudo Observacional Académico (Severity) . 2020
Dar voz aos médicos de família: um estudo qualitativo.
Investigador Principal: Paulo Alexandre Azevedo Pereira Santos
Estudo Observacional Académico (Voz) . 2020
Stress among Portuguese medical students: A national cross-sectional study
Investigador Principal: Paulo Alexandre Azevedo Pereira Santos
Estudo Clínico Académico (Stress) . 2020
COVID-19 patients followed in Portuguese Primary Care: a retrospective cohort study based on the national case series
Investigador Principal: Paulo Alexandre Azevedo Pereira Santos
Estudo Clínico Académico (COVID-19 Primary Care) . 2021
Stigma about mental disease in Portuguese medical students: a cross sectional study
Investigador Principal: Paulo Alexandre Azevedo Pereira Santos
Estudo Clínico Académico (Stigma) . 2020
The impact of Health Literacy on Knowledge and Attitudes towards preventive strategies against COVID- 19: a cross-sectional study
Investigador Principal: Paulo Alexandre Azevedo Pereira Santos
Estudo Clínico Académico . 2021
The Impact of Health Literacy in Adherence to Medications in a population with Acute Lumbar Pain: a Cross-Sectional Study
Investigador Principal: Paulo Alexandre Azevedo Pereira Santos
Estudo Clínico Académico . 2022
Tendências nas Hospitalizações por Insuficiência Cardíaca durante um Período de Dezasseis Anos: Dados de Abrangência Nacional para Portugal
Investigador Principal: José Alberto da Silva Freitas
Estudo Clínico Académico (Hospitalizações IC) . 2022
Complexity Sciences applied to Cardiotocography
Investigador Principal: Cristina Maria Nogueira da Costa Santos
Estudo Clínico Académico . 2022
Healthcare Human Resources and Quality Indicators: Approaches to Strengthening Primary Care.
Investigador Principal: José Alberto da Silva Freitas
Estudo Clínico Académico . 2022
A machine learning-based approach to support the assessment of clinical coded data quality in the context of Diagnosis-Related Groups classification systems
Investigador Principal: José Alberto da Silva Freitas
Estudo Clínico Académico . 2020
Citar a publicação
Pinto A,Viana J,Conceiçao G,Santos P,Santos C,Freitas A. Mobile Application for Improvement of Self-Management of Type 2 Diabetes: Usability Pilot Test. En:33rd Medical Informatics Europe Conference (MIE) - Caring is Sharing - Exploiting the Value in Data for Health and Innovation. 2023. Gothenburg. NIEUWE HEMWEG 6B, 1013 BG AMSTERDAM, NETHERLANDS:IOS Press BV. 2023. P.p. 492-493.