Towards Machine Learning-Aided Lung Cancer Clinical Routines: Approaches and Open Challenges

Data de publicação: Data Ahead of Print:

Autores da FMUP

  • Cláudia Susana Soares De Freitas

    Autor

  • Venceslau José Coelho Pinto Hespanhol

    Autor

Participantes de fora da FMUP

  • Silva, F
  • Pereira, T
  • Neves, I
  • Morgado, J
  • Malafaia, M
  • Sousa, J
  • Fonseca, J
  • Negrao, E
  • de Lima, BF
  • da Silva, MC
  • Madureira, A.
  • Ramos, I
  • Costa, JL
  • Cunha, A
  • Oliveira, HP

Unidades de investigação

Abstract

Advancements in the development of computer-aided decision (CAD) systems for clinical routines provide unquestionable benefits in connecting human medical expertise with machine intelligence, to achieve better quality healthcare. Considering the large number of incidences and mortality numbers associated with lung cancer, there is a need for the most accurate clinical procedures; thus, the possibility of using artificial intelligence (AI) tools for decision support is becoming a closer reality. At any stage of the lung cancer clinical pathway, specific obstacles are identified and "motivate" the application of innovative AI solutions. This work provides a comprehensive review of the most recent research dedicated toward the development of CAD tools using computed tomography images for lung cancer-related tasks. We discuss the major challenges and provide critical perspectives on future directions. Although we focus on lung cancer in this review, we also provide a more clear definition of the path used to integrate AI in healthcare, emphasizing fundamental research points that are crucial for overcoming current barriers.

Dados da publicação

ISSN/ISSNe:
2075-4426, 2075-4426

Journal of Personalized Medicine  Multidisciplinary Digital Publishing Institute (MDPI)

Tipo:
Article
Páginas:
480-
Link para outro recurso:
www.scopus.com

Citações Recebidas na Web of Science: 16

Citações Recebidas na Scopus: 27

Documentos

  • Não há documentos

Métricas

Filiações mostrar / ocultar

Keywords

  • computer-aided decision; learning models; CT scan; lung cancer

Financiamento

Proyectos asociados

Doença do Refluxo Gastro-esofágico e Doença Pulmonar

Investigador Principal: Venceslau José Coelho Pinto Hespanhol

Estudo Clínico Académico (Refluxo Gastro-esofágic) . 2020

A importância do diagnóstico na Fibrose Pulmonar Idiopática

Investigador Principal: Venceslau José Coelho Pinto Hespanhol

Estudo Clínico Académico (FPI) . 2020

Imunoterapia no cancro do pulmão: PD-L1, biomarcador preditivo?

Investigador Principal: Venceslau José Coelho Pinto Hespanhol

Estudo Clínico Académico . 2020

Citar a publicação

Partilhar a publicação