Comprehensive Perspective for Lung Cancer Characterisation Based on AI Solutions Using CT Images

Data de publicação:

Autores da FMUP

  • Cláudia Susana Soares De Freitas

    Autor

  • Venceslau José Coelho Pinto Hespanhol

    Autor

Participantes de fora da FMUP

  • Pereira, T
  • Costa, JL
  • Morgado, J
  • Silva, F
  • Negrao, E
  • de Lima, BF
  • da Silva, MC
  • Madureira, AJ
  • Ramos, I
  • Cunha, A
  • Oliveira, HP

Unidades de investigação

Abstract

Lung cancer is still the leading cause of cancer death in the world. For this reason, novel approaches for early and more accurate diagnosis are needed. Computer-aided decision (CAD) can be an interesting option for a noninvasive tumour characterisation based on thoracic computed tomography (CT) image analysis. Until now, radiomics have been focused on tumour features analysis, and have not considered the information on other lung structures that can have relevant features for tumour genotype classification, especially for epidermal growth factor receptor (EGFR), which is the mutation with the most successful targeted therapies. With this perspective paper, we aim to explore a comprehensive analysis of the need to combine the information from tumours with other lung structures for the next generation of CADs, which could create a high impact on targeted therapies and personalised medicine. The forthcoming artificial intelligence (AI)-based approaches for lung cancer assessment should be able to make a holistic analysis, capturing information from pathological processes involved in cancer development. The powerful and interpretable AI models allow us to identify novel biomarkers of cancer development, contributing to new insights about the pathological processes, and making a more accurate diagnosis to help in the treatment plan selection.

Dados da publicação

ISSN/ISSNe:
2077-0383, 2077-0383

Journal of Clinical Medicine  MDPI AG

Tipo:
Article
Páginas:
118-10
Link para outro recurso:
www.scopus.com

Citações Recebidas na Web of Science: 13

Citações Recebidas na Scopus: 17

Documentos

  • Não há documentos

Métricas

Filiações mostrar / ocultar

Keywords

  • lung cancer assessment; tumour characterisation; personalised medicine; computer-aided decision; computed tomography analysis

Financiamento

Proyectos asociados

Doença do Refluxo Gastro-esofágico e Doença Pulmonar

Investigador Principal: Venceslau José Coelho Pinto Hespanhol

Estudo Clínico Académico (Refluxo Gastro-esofágic) . 2020

A importância do diagnóstico na Fibrose Pulmonar Idiopática

Investigador Principal: Venceslau José Coelho Pinto Hespanhol

Estudo Clínico Académico (FPI) . 2020

Imunoterapia no cancro do pulmão: PD-L1, biomarcador preditivo?

Investigador Principal: Venceslau José Coelho Pinto Hespanhol

Estudo Clínico Académico . 2020

Citar a publicação

Partilhar a publicação