Comprehensive Perspective for Lung Cancer Characterisation Based on AI Solutions Using CT Images

Autores da FMUP
Participantes de fora da FMUP
- Pereira, T
- Costa, JL
- Morgado, J
- Silva, F
- Negrao, E
- de Lima, BF
- da Silva, MC
- Madureira, AJ
- Ramos, I
- Cunha, A
- Oliveira, HP
Unidades de investigação
Abstract
Lung cancer is still the leading cause of cancer death in the world. For this reason, novel approaches for early and more accurate diagnosis are needed. Computer-aided decision (CAD) can be an interesting option for a noninvasive tumour characterisation based on thoracic computed tomography (CT) image analysis. Until now, radiomics have been focused on tumour features analysis, and have not considered the information on other lung structures that can have relevant features for tumour genotype classification, especially for epidermal growth factor receptor (EGFR), which is the mutation with the most successful targeted therapies. With this perspective paper, we aim to explore a comprehensive analysis of the need to combine the information from tumours with other lung structures for the next generation of CADs, which could create a high impact on targeted therapies and personalised medicine. The forthcoming artificial intelligence (AI)-based approaches for lung cancer assessment should be able to make a holistic analysis, capturing information from pathological processes involved in cancer development. The powerful and interpretable AI models allow us to identify novel biomarkers of cancer development, contributing to new insights about the pathological processes, and making a more accurate diagnosis to help in the treatment plan selection.
Dados da publicação
- ISSN/ISSNe:
- 2077-0383, 2077-0383
- Tipo:
- Article
- Páginas:
- 118-10
- DOI:
- 10.3390/jcm10010118
- Link para outro recurso:
- www.scopus.com
Journal of Clinical Medicine MDPI AG
Citações Recebidas na Web of Science: 13
Citações Recebidas na Scopus: 17
Documentos
- Não há documentos
Filiações
Keywords
- lung cancer assessment; tumour characterisation; personalised medicine; computer-aided decision; computed tomography analysis
Financiamento
Proyectos asociados
Doença do Refluxo Gastro-esofágico e Doença Pulmonar
Investigador Principal: Venceslau José Coelho Pinto Hespanhol
Estudo Clínico Académico (Refluxo Gastro-esofágic) . 2020
A importância do diagnóstico na Fibrose Pulmonar Idiopática
Investigador Principal: Venceslau José Coelho Pinto Hespanhol
Estudo Clínico Académico (FPI) . 2020
Imunoterapia no cancro do pulmão: PD-L1, biomarcador preditivo?
Investigador Principal: Venceslau José Coelho Pinto Hespanhol
Estudo Clínico Académico . 2020
Citar a publicação
Pereira T,Freitas C,Costa JL,Morgado J,Silva F,Negrao E,de Lima BF,da MC,Madureira AJ,Ramos I,Hespanhol V,Cunha A,Oliveira HP. Comprehensive Perspective for Lung Cancer Characterisation Based on AI Solutions Using CT Images. J. Clin. Med. 2021. 10. (1):p. 118-10. IF:4,964. (2).