On the Impact of Synchronous Electrocardiogram Signals for Heart Sounds Segmentation

Data de publicação:

Autores da FMUP

  • Ricardo Manuel Alves Monteiro Fontes De Carvalho

    Autor

Participantes de fora da FMUP

  • Silva, A
  • Teixeira, R
  • Coimbra, M
  • Renna, F
  • IEEE

Unidades de investigação

Abstract

In this paper we study the heart sound segmentation problem using Deep Neural Networks. The impact of available electrocardiogram (ECG) signals in addition to phonocardiogram (PCG) signals is evaluated. To incorporate ECG, two different models considered, which are built upon a 1D U-net - an early fusion one that fuses ECG in an early processing stage, and a late fusion one that averages the probabilities obtained by two networks applied independently on PCG and ECG data. Results show that, in contrast with traditional uses of ECG for PCG gating, early fusion of PCG and ECG information can provide more robust heart sound segmentation. As a proof of concept, we use the publicly available PhysioNet dataset. Validation results provide, on average, a sensitivity of 97.2%, 94.5%, and 95.6% and a Positive Predictive Value of 97.5%, 96.2%, and 96.1% for Early-fusion, Late-fusion, and unimodal (PCG only) models, respectively, showing the advantages of combining both signals at early stages to segment heart sounds.

Dados da publicação

ISSN/ISSNe:
0589-1019, 1557-170X

2016 38TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC)  Institute of Electrical and Electronics Engineers Inc.

Tipo:
Proceedings Paper
Páginas:
-

Documentos

  • Não há documentos

Métricas

Filiações mostrar / ocultar

Financiamento

Proyectos asociados

Dapagliflozin, Spironolactone or Both for HFpEF (SOGALDI-PEF) - NCT05676684

Investigador Principal: João Pedro Melo Marques Pinho Ferreira

Ensaio Clínico Académico (SOGALDI-PEF) . AstraZeneca . 2022

Screening of Fabry Disease in Portuguese Patients With Idiopathic Cardiomyopathies (F-CHECK) - NCT05409846

Investigador Principal: Elisabete Lousada Martins Oliveira Bernardes

Estudo Observacional Académico (F-CHECK) . Sanofi . 2022

The Impact of Obesity on Cardiac Function and Morphology in Aortic Stenosis

Investigador Principal: Ricardo Manuel Alves Monteiro Fontes de Carvalho

Estudo Clínico Académico (Obesity) . 2020

Suboptimal control of cardiovascular risk factors in myocardial infarction survivors

Investigador Principal: Ricardo Manuel Alves Monteiro Fontes de Carvalho

Estudo Clínico Académico (myocard) . 2020

Modeling Aortic Stenosis progression: impact on follow-up, treatment, and survival

Investigador Principal: Ricardo Manuel Alves Monteiro Fontes de Carvalho

Estudo Clínico Académico . 2022

Epicardial adipose tissue volume is not an independent predictor of atrial fibrillation recurrence after ablation

Investigador Principal: Ricardo Manuel Alves Monteiro Fontes de Carvalho

Estudo Clínico Académico . 2022

Flow-status in severe aortic stenosis for percutaneous valve implantation: Should we follow the flow?

Investigador Principal: Ricardo Manuel Alves Monteiro Fontes de Carvalho

Estudo Clínico Académico . 2022

Cardiovascular Impact of Metabolic Syndrome: From Mechanisms to New Treatment Targets

Investigador Principal: Ricardo Manuel Alves Monteiro Fontes de Carvalho

Estudo Clínico Académico . 2021

Citar a publicação

Partilhar a publicação