Artificial Intelligence-Supported Development of Health Guideline Questions.

Data de publicação: Data Ahead of Print:

Autores da FMUP

  • Bernardo Manuel De Sousa Pinto

    Autor

  • Rafael José Monteiro Da Silva Vieira

    Autor

  • Joana Maria Correia Amaro

    Autor

  • Ana Margarida Barbosa Ribeiro Pereira

    Autor

  • João De Almeida Lopes Da Fonseca

    Autor

  • Ricardo João Cruz Correia

    Autor

Participantes de fora da FMUP

  • Marques-Cruz M
  • Bognanni A
  • Gil-Mata S
  • Jankin S
  • Pinheiro L
  • Mota M
  • Giovannini M
  • de Las Vecillas L
  • Litynska J
  • Samolinski B
  • Bernstein J
  • Dykewicz M
  • Hofmann-Apitius M
  • Jacobs M
  • Papadopoulos N
  • Williams S
  • Zuberbier T
  • Bousquet J
  • Schünemann HJ

Unidades de investigação

Abstract

BACKGROUND: Guideline questions are typically proposed by experts. OBJECTIVE: To assess how large language models (LLMs) can support the development of guideline questions, providing insights on approaches and lessons learned. DESIGN: Two approaches for guideline question generation were assessed: 1) identification of questions conveyed by online search queries and 2) direct generation of guideline questions by LLMs. For the former, the researchers retrieved popular queries on allergic rhinitis using Google Trends (GT) and identified those conveying questions using both manual and LLM-based methods. They then manually structured as guideline questions the queries that conveyed relevant questions. For the second approach, they tasked an LLM with proposing guideline questions, assuming the role of either a patient or a clinician. SETTING: Allergic Rhinitis and its Impact on Asthma (ARIA) 2024 guidelines. PARTICIPANTS: None. MEASUREMENTS: Frequency of relevant questions generated. RESULTS: The authors retrieved 3975 unique queries using GT. From these, they identified 37 questions, of which 22 had not been previously posed by guideline panel members and 2 were eventually prioritized by the panel. Direct interactions with LLMs resulted in the generation of 22 unique relevant questions (11 not previously suggested by panel members), and 4 were eventually prioritized by the panel. In total, 6 of 39 final questions prioritized for the 2024 ARIA guidelines were not initially thought of by the panel. The researchers provide a set of practical insights on the implementation of their approaches based on the lessons learned. LIMITATION: Single case study (ARIA guidelines). CONCLUSION: Approaches using LLMs can support the development of guideline questions, complementing traditional methods and potentially augmenting questions prioritized by guideline panels. PRIMARY FUNDING SOURCE: Fraunhofer Cluster of Excellence for Immune-Mediated Diseases.

Dados da publicação

ISSN/ISSNe:
1539-3704, 0003-4819

Annals of Internal Medicine  American College of Physicians

Tipo:
Article
Páginas:
1518-1529
Link para outro recurso:
www.scopus.com

Citações Recebidas na Web of Science: 1

Citações Recebidas na Scopus: 1

Documentos

  • Não há documentos

Métricas

Filiações mostrar / ocultar

Keywords

  • Artificial Intelligence; Asthma; Humans; Practice Guidelines as Topic; Rhinitis, Allergic; antiallergic agent; allergic rhinitis; Article; artificial intelligence; ChatGPT; clinician; funding; human; large language model; patient care; practice guideline; questionnaire; scientist; search engine; allergic rhinitis; artificial intelligence; asthma

Proyectos asociados

Prevalence and Characterisation of Asthma Patients According to Disease Severity in Portugal (EPI-ASTHMA) - NCT05169619

Investigador Principal: João de Almeida Lopes da Fonseca

Estudo Clínico Observacional (EPI-ASTHMA) . AstraZeneca . 2021

Effect of a Mobile App on Improving Asthma Control in Adolescents and Adults With Persistent Asthma: A Pilot Randomized Multicentre, Superiority Clinical Trial (mINSPIRERS) - NCT05129527

Investigador Principal: João de Almeida Lopes da Fonseca

Ensaio Clínico Académico (mINSPIRERS) . 2021

Utilização em estudos observacionais do Registo de Asma Grave Portugal.

Investigador Principal: João de Almeida Lopes da Fonseca

Estudo Observacional Académico (RAG) . 2020

Impacto da COVID-19 nas taxas de cesarianas por classificação de Robson nos hospitais portugueses.

Investigador Principal: Ricardo João Cruz Correia

Estudo Observacional Académico (Cesarianas) . 2020

Predição do resultado neonatal baseado na idade gestacional e peso ao nascimento: uma graduação de risco para cenários de nascimento com poucos recursos.

Investigador Principal: Ricardo João Cruz Correia

Estudo Observacional Académico (NEONATAL) . 2019

Clinical Research Collaboration Severe Heterogenous Asthma Research collaboration, Patient-centered (CRC SHARP).

Investigador Principal: João de Almeida Lopes da Fonseca

Estudo Clínico Observacional (SHARP) . European Respiratory Society . 2021

Multidimensional phenotyping of severe asthma patients and its impact on disease control and therapeutic response - analysis from the Portuguese Severe Asthma Registry.

Investigador Principal: João de Almeida Lopes da Fonseca

Estudo Clínico Observacional (RAG-SPP-GSK) . SPPneumologia . 2022

BREATHE - An oBservational, pRimary data study to characterize severe AsThma pHenotypes and assEss disease burden across the EUCAN region.

Investigador Principal: João de Almeida Lopes da Fonseca

Estudo Clínico Observacional (RAG-AZ-BREATHE) . AstraZeneca . 2022

Desenvolvimento de uma escala de risco COVID-19 através de uma análise I&D probabilística de Monte Carlo de forma a dotar o Hospital de Ovar de planos de contingência adaptados para gestão de casos de Pandemia. (COVID-19)

Investigador Principal: Ricardo João Cruz Correia

Estudo Clínico Académico (COVID-19) . FCT . 2020

Excess mortality during COVID-19 in 5 european countries and a critique of mortality data analysis

Investigador Principal: Ricardo João Cruz Correia

Estudo Clínico Académico (Mortality) . 2020

Seroprevalence of SARS-CoV-2 and assessment of epidemiologic determinants in Portuguese municipal workers

Investigador Principal: Bernardo Manuel De Sousa Pinto

Estudo Clínico Académico (SARS-CoV-2) . 2021

Efficiency in Spine Care ? Assessing outcomes and costs to inform healthcare improvement

Investigador Principal: João de Almeida Lopes da Fonseca

Estudo Clínico Académico . 2022

Use of secondary data, health technology assessment methods and economic modelling applied to penicillin allergy

Investigador Principal: João de Almeida Lopes da Fonseca

Estudo Clínico Académico . 2020

Using different data sources for the identification of asthma patients and those at high risk of adverse outcomes

Investigador Principal: João de Almeida Lopes da Fonseca

Estudo Clínico Académico . 2020

Phenotypes of Chronic Diseases of the Airways: Towards Multidimensional Data -Driven Profiling

Investigador Principal: João de Almeida Lopes da Fonseca

Estudo Clínico Académico . 2020

Citar a publicação

Partilhar a publicação