Artificial Intelligence-Supported Development of Health Guideline Questions.
Autores da FMUP
Participantes de fora da FMUP
- Marques-Cruz M
- Bognanni A
- Gil-Mata S
- Jankin S
- Pinheiro L
- Mota M
- Giovannini M
- de Las Vecillas L
- Litynska J
- Samolinski B
- Bernstein J
- Dykewicz M
- Hofmann-Apitius M
- Jacobs M
- Papadopoulos N
- Williams S
- Zuberbier T
- Bousquet J
- Schünemann HJ
Unidades de investigação
Abstract
BACKGROUND: Guideline questions are typically proposed by experts. OBJECTIVE: To assess how large language models (LLMs) can support the development of guideline questions, providing insights on approaches and lessons learned. DESIGN: Two approaches for guideline question generation were assessed: 1) identification of questions conveyed by online search queries and 2) direct generation of guideline questions by LLMs. For the former, the researchers retrieved popular queries on allergic rhinitis using Google Trends (GT) and identified those conveying questions using both manual and LLM-based methods. They then manually structured as guideline questions the queries that conveyed relevant questions. For the second approach, they tasked an LLM with proposing guideline questions, assuming the role of either a patient or a clinician. SETTING: Allergic Rhinitis and its Impact on Asthma (ARIA) 2024 guidelines. PARTICIPANTS: None. MEASUREMENTS: Frequency of relevant questions generated. RESULTS: The authors retrieved 3975 unique queries using GT. From these, they identified 37 questions, of which 22 had not been previously posed by guideline panel members and 2 were eventually prioritized by the panel. Direct interactions with LLMs resulted in the generation of 22 unique relevant questions (11 not previously suggested by panel members), and 4 were eventually prioritized by the panel. In total, 6 of 39 final questions prioritized for the 2024 ARIA guidelines were not initially thought of by the panel. The researchers provide a set of practical insights on the implementation of their approaches based on the lessons learned. LIMITATION: Single case study (ARIA guidelines). CONCLUSION: Approaches using LLMs can support the development of guideline questions, complementing traditional methods and potentially augmenting questions prioritized by guideline panels. PRIMARY FUNDING SOURCE: Fraunhofer Cluster of Excellence for Immune-Mediated Diseases.
Dados da publicação
- ISSN/ISSNe:
- 1539-3704, 0003-4819
- Tipo:
- Article
- Páginas:
- 1518-1529
- Link para outro recurso:
- www.scopus.com
Annals of Internal Medicine American College of Physicians
Citações Recebidas na Web of Science: 1
Citações Recebidas na Scopus: 1
Documentos
- Não há documentos
Filiações
Keywords
- Artificial Intelligence; Asthma; Humans; Practice Guidelines as Topic; Rhinitis, Allergic; antiallergic agent; allergic rhinitis; Article; artificial intelligence; ChatGPT; clinician; funding; human; large language model; patient care; practice guideline; questionnaire; scientist; search engine; allergic rhinitis; artificial intelligence; asthma
Proyectos asociados
Prevalence and Characterisation of Asthma Patients According to Disease Severity in Portugal (EPI-ASTHMA) - NCT05169619
Investigador Principal: João de Almeida Lopes da Fonseca
Estudo Clínico Observacional (EPI-ASTHMA) . AstraZeneca . 2021
Effect of a Mobile App on Improving Asthma Control in Adolescents and Adults With Persistent Asthma: A Pilot Randomized Multicentre, Superiority Clinical Trial (mINSPIRERS) - NCT05129527
Investigador Principal: João de Almeida Lopes da Fonseca
Ensaio Clínico Académico (mINSPIRERS) . 2021
Utilização em estudos observacionais do Registo de Asma Grave Portugal.
Investigador Principal: João de Almeida Lopes da Fonseca
Estudo Observacional Académico (RAG) . 2020
Impacto da COVID-19 nas taxas de cesarianas por classificação de Robson nos hospitais portugueses.
Investigador Principal: Ricardo João Cruz Correia
Estudo Observacional Académico (Cesarianas) . 2020
Predição do resultado neonatal baseado na idade gestacional e peso ao nascimento: uma graduação de risco para cenários de nascimento com poucos recursos.
Investigador Principal: Ricardo João Cruz Correia
Estudo Observacional Académico (NEONATAL) . 2019
Clinical Research Collaboration Severe Heterogenous Asthma Research collaboration, Patient-centered (CRC SHARP).
Investigador Principal: João de Almeida Lopes da Fonseca
Estudo Clínico Observacional (SHARP) . European Respiratory Society . 2021
Multidimensional phenotyping of severe asthma patients and its impact on disease control and therapeutic response - analysis from the Portuguese Severe Asthma Registry.
Investigador Principal: João de Almeida Lopes da Fonseca
Estudo Clínico Observacional (RAG-SPP-GSK) . SPPneumologia . 2022
BREATHE - An oBservational, pRimary data study to characterize severe AsThma pHenotypes and assEss disease burden across the EUCAN region.
Investigador Principal: João de Almeida Lopes da Fonseca
Estudo Clínico Observacional (RAG-AZ-BREATHE) . AstraZeneca . 2022
Desenvolvimento de uma escala de risco COVID-19 através de uma análise I&D probabilística de Monte Carlo de forma a dotar o Hospital de Ovar de planos de contingência adaptados para gestão de casos de Pandemia. (COVID-19)
Investigador Principal: Ricardo João Cruz Correia
Estudo Clínico Académico (COVID-19) . FCT . 2020
Excess mortality during COVID-19 in 5 european countries and a critique of mortality data analysis
Investigador Principal: Ricardo João Cruz Correia
Estudo Clínico Académico (Mortality) . 2020
Seroprevalence of SARS-CoV-2 and assessment of epidemiologic determinants in Portuguese municipal workers
Investigador Principal: Bernardo Manuel De Sousa Pinto
Estudo Clínico Académico (SARS-CoV-2) . 2021
Efficiency in Spine Care ? Assessing outcomes and costs to inform healthcare improvement
Investigador Principal: João de Almeida Lopes da Fonseca
Estudo Clínico Académico . 2022
Use of secondary data, health technology assessment methods and economic modelling applied to penicillin allergy
Investigador Principal: João de Almeida Lopes da Fonseca
Estudo Clínico Académico . 2020
Using different data sources for the identification of asthma patients and those at high risk of adverse outcomes
Investigador Principal: João de Almeida Lopes da Fonseca
Estudo Clínico Académico . 2020
Phenotypes of Chronic Diseases of the Airways: Towards Multidimensional Data -Driven Profiling
Investigador Principal: João de Almeida Lopes da Fonseca
Estudo Clínico Académico . 2020
Citar a publicação
Sousa B,Vieira RJ,Marques M,Bognanni A,Gil S,Jankin S,Amaro J,Pinheiro L,Mota M,Giovannini M,de Las Vecillas L,Pereira AM,Litynska J,Samolinski B,Bernstein J,Dykewicz M,Hofmann M,Jacobs M,Papadopoulos N,Williams S,Zuberbier T,Fonseca JA,Cruz R,Bousquet J,Schünemann HJ. Artificial Intelligence-Supported Development of Health Guideline Questions. Ann. Intern. Med. 2024. 177. (11):p. 1518-1529. IF:39,200. (1).