Artificial Intelligence and Colposcopy: Automatic Identification of Vaginal Squamous Cell Carcinoma Precursors

Data de publicação:

Autores da FMUP

  • Manuel Guilherme Gonçalves Macedo

    Autor

Participantes de fora da FMUP

  • Mascarenhas, M
  • Alencoao, I
  • Carinhas, MJ
  • Martins, M
  • Ribeiro, T
  • Mendes, F
  • Cardoso, P
  • Almeida, MJ
  • Mota, J
  • Fernandes, J
  • Ferreira, J
  • Mascarenhas, T
  • Zulmira, R

Unidades de investigação

Abstract

Background/Objectives: While human papillomavirus (HPV) is well known for its role in cervical cancer, it also affects vaginal cancers. Although colposcopy offers a comprehensive examination of the female genital tract, its diagnostic accuracy remains suboptimal. Integrating artificial intelligence (AI) could enhance the cost-effectiveness of colposcopy, but no AI models specifically differentiate low-grade (LSILs) and high-grade (HSILs) squamous intraepithelial lesions in the vagina. This study aims to develop and validate an AI model for the differentiation of HPV-associated dysplastic lesions in this region. Methods: A convolutional neural network (CNN) model was developed to differentiate HSILs from LSILs in vaginoscopy (during colposcopy) still images. The AI model was developed on a dataset of 57,250 frames (90% training/validation [including a 5-fold cross-validation] and 10% testing) obtained from 71 procedures. The model was evaluated based on its sensitivity, specificity, accuracy and area under the receiver operating curve (AUROC). Results: For HSIL/LSIL differentiation in the vagina, during the training/validation phase, the CNN demonstrated a mean sensitivity, specificity and accuracy of 98.7% (IC95% 96.7-100.0%), 99.1% (IC95% 98.1-100.0%), and 98.9% (IC95% 97.9-99.8%), respectively. The mean AUROC was 0.990 +/- 0.004. During testing phase, the sensitivity was 99.6% and 99.7% for both specificity and accuracy. Conclusions: This is the first globally developed AI model capable of HSIL/LSIL differentiation in the vaginal region, demonstrating high and robust performance metrics. Its effective application paves the way for AI-powered colposcopic assessment across the entire female genital tract, offering a significant advancement in women's healthcare worldwide.

Dados da publicação

ISSN/ISSNe:
2072-6694, 2072-6694

Cancers  Multidisciplinary Digital Publishing Institute (MDPI)

Tipo:
Article
Páginas:
-
Link para outro recurso:
www.scopus.com

Documentos

  • Não há documentos

Métricas

Filiações mostrar / ocultar

Keywords

  • vaginal neoplasms; HSIL; LSIL; colposcopy; artificial intelligence

Proyectos asociados

The contribution of endoscopic ultrasound and biomarkers in the management of pancreatic adenocarcinoma and its precursor lesions.

Investigador Principal: Manuel Guilherme Gonçalves Macedo

Estudo Clínico Académico . 2023

Noninvasive serum biomarkers of portal hypertension in liver cirrhosis

Investigador Principal: Manuel Guilherme Gonçalves Macedo

Estudo Clínico Académico . 2023

Otimização do rendimento da colangiopancreatografia retrógrada endoscópica na avaliação das estenoses pancreato-biliares indeterminadas

Investigador Principal: Manuel Guilherme Gonçalves Macedo

Estudo Clínico Académico . 2023

Endoscopic Treatment Of Upper Gastrointestinal Postsurgical Leaks

Investigador Principal: Manuel Guilherme Gonçalves Macedo

Estudo Clínico Académico . 2023

Citar a publicação

Partilhar a publicação