Secur-e-Health Project: Towards Federated Learning for Smart Pediatric Care

Data de publicação:

Autores da FMUP

  • Tiago Salgado De Magalhães Taveira Gomes

    Autor

  • José Alberto Da Silva Freitas

    Autor

Participantes de fora da FMUP

  • Rb-Silva, Rita
  • Ribeiro, Xavier
  • Almeida, Francisca
  • Ameijeiras-Rodriguez, Carolina
  • Souza, Julio
  • Conceicao, Luis
  • Marreiros, Goreti

Unidades de investigação

Abstract

The application of machine learning (ML) algorithms to electronic health records (EHR) data allows the achievement of data-driven insights on various clinical problems and the development of clinical decision support (CDS) systems to improve patient care. However, data governance and privacy barriers hinder the use of data from multiple sources, especially in the medical field due to the sensitivity of data. Federated learning (FL) is an attractive data privacy-preserving solution in this context by enabling the training of ML models with data from multiple sources without any data sharing, using distributed remotely hosted datasets. The Secur-e-Health project aims at developing a solution in terms of CDS tools encompassing FL predictive models and recommendation systems. This tool may be especially useful in Pediatrics due to the increasing demands on Pediatric services, and the current scarcity of ML applications in this field compared to adult care. Herein we provide a description of the technical solution proposed in this project for three specific pediatric clinical problems: childhood obesity management, pilonidal cyst post-surgical care and retinography imaging analysis.

Dados da publicação

ISBN:
9781643683898

Caring Is Sharing-Exploiting The Value In Data For Health And Innovation-Proceedings Of Mie 2023  IOS PRESS

Tipo:
Proceedings Paper
Páginas:
516-520

Documentos

  • Não há documentos

Filiações mostrar / ocultar

Keywords

  • federated learning; machine learning; privacy-preserving protocols; clinical decision support; pediatrics

Proyectos asociados

Stimulate continous monitoring in personal and physical health.

Investigador Principal: José Alberto da Silva Freitas

Estudo Observacional Académico (INNO4HEALTH) . FCT . 2021

Estudos de avaliação de exequibilidade, usabilidade e utilização de uma app para telemóvel para gestão da diabetes tipo 2.

Investigador Principal: José Alberto da Silva Freitas

Estudo Observacional Académico (FoodFriend) . FCT . 2022

Tendências nas Hospitalizações por Insuficiência Cardíaca durante um Período de Dezasseis Anos: Dados de Abrangência Nacional para Portugal

Investigador Principal: José Alberto da Silva Freitas

Estudo Clínico Académico (Hospitalizações IC) . 2022

Healthcare Human Resources and Quality Indicators: Approaches to Strengthening Primary Care.

Investigador Principal: José Alberto da Silva Freitas

Estudo Clínico Académico . 2022

A machine learning-based approach to support the assessment of clinical coded data quality in the context of Diagnosis-Related Groups classification systems

Investigador Principal: José Alberto da Silva Freitas

Estudo Clínico Académico . 2020

Citar a publicação

Partilhar a publicação