Secur-e-Health Project: Towards Federated Learning for Smart Pediatric Care
Autores da FMUP
Participantes de fora da FMUP
- Rb-Silva, Rita
- Ribeiro, Xavier
- Almeida, Francisca
- Ameijeiras-Rodriguez, Carolina
- Souza, Julio
- Conceicao, Luis
- Marreiros, Goreti
Unidades de investigação
Abstract
The application of machine learning (ML) algorithms to electronic health records (EHR) data allows the achievement of data-driven insights on various clinical problems and the development of clinical decision support (CDS) systems to improve patient care. However, data governance and privacy barriers hinder the use of data from multiple sources, especially in the medical field due to the sensitivity of data. Federated learning (FL) is an attractive data privacy-preserving solution in this context by enabling the training of ML models with data from multiple sources without any data sharing, using distributed remotely hosted datasets. The Secur-e-Health project aims at developing a solution in terms of CDS tools encompassing FL predictive models and recommendation systems. This tool may be especially useful in Pediatrics due to the increasing demands on Pediatric services, and the current scarcity of ML applications in this field compared to adult care. Herein we provide a description of the technical solution proposed in this project for three specific pediatric clinical problems: childhood obesity management, pilonidal cyst post-surgical care and retinography imaging analysis.
Dados da publicação
- ISBN:
- 9781643683898
- Tipo:
- Proceedings Paper
- Páginas:
- 516-520
- DOI:
- 10.3233/SHTI230196
Caring Is Sharing-Exploiting The Value In Data For Health And Innovation-Proceedings Of Mie 2023 IOS PRESS
Documentos
- Não há documentos
Filiações
Keywords
- federated learning; machine learning; privacy-preserving protocols; clinical decision support; pediatrics
Proyectos asociados
Stimulate continous monitoring in personal and physical health.
Investigador Principal: José Alberto da Silva Freitas
Estudo Observacional Académico (INNO4HEALTH) . FCT . 2021
Estudos de avaliação de exequibilidade, usabilidade e utilização de uma app para telemóvel para gestão da diabetes tipo 2.
Investigador Principal: José Alberto da Silva Freitas
Estudo Observacional Académico (FoodFriend) . FCT . 2022
Tendências nas Hospitalizações por Insuficiência Cardíaca durante um Período de Dezasseis Anos: Dados de Abrangência Nacional para Portugal
Investigador Principal: José Alberto da Silva Freitas
Estudo Clínico Académico (Hospitalizações IC) . 2022
Healthcare Human Resources and Quality Indicators: Approaches to Strengthening Primary Care.
Investigador Principal: José Alberto da Silva Freitas
Estudo Clínico Académico . 2022
A machine learning-based approach to support the assessment of clinical coded data quality in the context of Diagnosis-Related Groups classification systems
Investigador Principal: José Alberto da Silva Freitas
Estudo Clínico Académico . 2020
Citar a publicação
Rb R,Ribeiro X,Almeida F,Ameijeiras C,Souza J,Conceicao L,Taveira T,Marreiros G,Freitas A. Secur-e-Health Project: Towards Federated Learning for Smart Pediatric Care. En:Caring Is Sharing-Exploiting The Value In Data For Health And Innovation-Proceedings Of Mie 2023. NIEUWE HEMWEG 6B, 1013 BG AMSTERDAM, NETHERLANDS:IOS PRESS. 2023. p. 516-520.