The Role of Novel Digital Clinical Tools in the Screening or Diagnosis of Obstructive Sleep Apnea: Systematic Review

Data de publicação:

Autores da FMUP

  • Pedro Pereira Rodrigues

    Autor

  • Daniela Filipa Ferreira Dos Santos

    Autor

Participantes de fora da FMUP

  • Duarte, M

Unidades de investigação

Abstract

Background: Digital clinical tools are a new technology that can be used in the screening or diagnosis of obstructive sleep apnea (OSA), notwithstanding the crucial role of polysomnography, the gold standard.Objective: This study aimed to identify, gather, and analyze the most accurate digital tools and smartphone-based health platforms used for OSA screening or diagnosis in the adult population. Methods: We performed a comprehensive literature search of PubMed, Scopus, and Web of Science databases for studies evaluating the validity of digital tools in OSA screening or diagnosis until November 2022. The risk of bias was assessed using the Joanna Briggs Institute critical appraisal tool for diagnostic test accuracy studies. The sensitivity, specificity, and area under the curve (AUC) were used as discrimination measures.Results: We retrieved 1714 articles, 41 (2.39%) of which were included in the study. From these 41 articles, we found 7 (17%) smartphone-based tools, 10 (24%) wearables, 11 (27%) bed or mattress sensors, 5 (12%) nasal airflow devices, and 8 (20%) other sensors that did not fit the previous categories. Only 8 (20%) of the 41 studies performed external validation of the developed tool. Of these, the highest reported values for AUC, sensitivity, and specificity were 0.99, 96%, and 92%, respectively, for a clinical cutoff of apnea-hypopnea index (AHI)& GE;30. These values correspond to a noncontact audio recorder that records sleep sounds, which are then analyzed by a deep learning technique that automatically detects sleep apnea events, calculates the AHI, and identifies OSA. Looking at the studies that only internally validated their models, the work that reported the highest accuracy measures showed AUC, sensitivity, and specificity values of 1.00, 100%, and 96%, respectively, for a clinical cutoff AHI & GE;30. It uses the Sonomat-a foam mattress that, aside from recording breath sounds, has pressure sensors that generate voltage when deformed, thus detecting respiratory movements, and uses it to classify OSA events.Conclusions: These clinical tools presented promising results with high discrimination measures (best results reached AUC>0.99). However, there is still a need for quality studies comparing the developed tools with the gold standard and validating them in external populations and other environments before they can be used in clinical settings.

Dados da publicação

ISSN/ISSNe:
1439-4456, 1438-8871

Journal of Medical Internet Research  JMIR Publications Inc.

Tipo:
Review
Páginas:
-
Link para outro recurso:
www.scopus.com

Citações Recebidas na Scopus: 7

Documentos

  • Não há documentos

Métricas

Filiações mostrar / ocultar

Keywords

  • obstructive sleep apnea; diagnosis; digital tools; smartphone; wearables; sensor; polysomnography; systematic review; mobile phone

Financiamento

Proyectos asociados

Predição e análise do tipo de parto em gestantes portuguesas através de Redes Bayesianas.

Investigador Principal: Pedro Pereira Rodrigues

Estudo Observacional Académico (Redes Bayesianas) . 2021

Hospitalização ou vigilância: ação precoce na orientação de pacientes com COVID-19.

Investigador Principal: Pedro Pereira Rodrigues

Estudo Observacional Académico (Orientação) . 2020

Identifying problems in the appointment scheduling system of a major Portuguese public hospital - Is there room for improvement?

Investigador Principal: Pedro Pereira Rodrigues

Estudo Clínico Académico (Scheduling system) . 2020

Congenital Heart Disease Detection Using Clinical Data and Auscultation Heart Sounds: a Machine Learning Approach

Investigador Principal: Pedro Pereira Rodrigues

Estudo Clínico Académico . 2021

Citar a publicação

Partilhar a publicação