Identification by cluster analysis of patients with asthma and nasal symptoms using the MASK-air® mHealth app

Data de publicação: Data Ahead of Print:

Autores da FMUP

  • Bernardo Manuel De Sousa Pinto

    Autor

  • Rita Da Silva Amaral

    Autor

  • Ana Isabel Alves De Sá E Sousa

    Autor

  • João De Almeida Lopes Da Fonseca

    Autor

Participantes de fora da FMUP

  • Bousquet, J
  • Anto, JM
  • Brussino, L
  • Canonica, GW
  • Cruz, AA
  • Gemicioglu, B
  • Haahtela, T
  • Kupczyk, M
  • Kvedariene, V
  • Larenas Linnemann, DE
  • Louis, R
  • Pham Thi, N
  • Puggioni, F
  • Regateiro, FS
  • Romantowski, J
  • Sastre, J
  • Scichilone, N
  • Taborda Barata, L
  • Ventura, MT
  • Agache, I
  • Bedbrook, A
  • Bergmann, KC
  • Bosnic Anticevich, S
  • Bonini, M
  • Boulet, LP
  • Brusselle, G
  • Buhl, R
  • Cecchi, L
  • Charpin, D
  • Chaves Loureiro, C
  • Czarlewski, W
  • de Blay, F
  • Devillier, P
  • Joos, G
  • Jutel, M
  • Klimek, L
  • Kuna, P
  • Laune, D
  • Pech, JL
  • Makela, M
  • Morais Almeida, M
  • Nadif, R
  • Niedoszytko, M
  • Ohta, K
  • Papadopoulos, NG
  • Papi, A
  • Yeverino, DR
  • Roche, N
  • Samolinski, B
  • Shamji, MH
  • Sheikh, A
  • Ulrik, CS
  • Usmani, OS
  • Valiulis, A
  • Vandenplas, O
  • Yorgancioglu, A
  • Zuberbier, T

Unidades de investigação

Abstract

Background: The self-reporting of asthma frequently leads to patient misidentification in epi-demiological studies. Strategies combining the triangulation of data sources may help to improve the identification of people with asthma. We aimed to combine information from the self-reporting of asthma, medication use and symptoms to identify asthma patterns in the users of an mHealth app. Methods: We studied MASK-air & REG; users who reported their daily asthma symptoms (assessed by a 0-100 visual analogue scale -"VAS Asthma") at least three times (either in three different months or in any period). K-means cluster analysis methods were applied to identify asthma pat-terns based on: (i) whether the user self-reported asthma; (ii) whether the user reported asthma medication use and (iii) VAS asthma. Clusters were compared by the number of medications used, VAS asthma levels and Control of Asthma and Allergic Rhinitis Test (CARAT) levels. Findings: We assessed a total of 8,075 MASK-air & REG; users. The main clustering approach resulted in the identification of seven groups. These groups were interpreted as probable: (i) severe/uncon-trolled asthma despite treatment (11.9-16.1% of MASK-air & REG; users); (ii) treated and partly-con-trolled asthma (6.3-9.7%); (iii) treated and controlled asthma (4.6-5.5%); (iv) untreated uncontrolled asthma (18.2-20.5%); (v) untreated partly-controlled asthma (10.1-10.7%); (vi) untreated controlled asthma (6.7-8.5%) and (vii) no evidence of asthma (33.0-40.2%). This classi-fication was validated in a study of 192 patients enrolled by physicians. Interpretation: We identified seven profiles based on the probability of having asthma and on its level of control. mHealth tools are hypothesis-generating and complement classical epidemio-logical approaches in identifying patients with asthma. & COPY; 2022 Sociedade Portuguesa de Pneumologia. Published by Elsevier Espana, S.L.U. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Copyright © 2022 Sociedade Portuguesa de Pneumologia. Published by Elsevier España, S.L.U. All rights reserved.

Dados da publicação

ISSN/ISSNe:
2531-0429, 2531-0437

Pulmonology  Elsevier Espana

Tipo:
Article
Páginas:
292-305
Link para outro recurso:
www.scopus.com

Citações Recebidas na Web of Science: 4

Citações Recebidas na Scopus: 15

Documentos

  • Não há documentos

Filiações mostrar / ocultar

Keywords

  • Asthma; Rhinitis; Cluster analysis; Treatment; Control

Proyectos asociados

Prevalence and Characterisation of Asthma Patients According to Disease Severity in Portugal (EPI-ASTHMA) - NCT05169619

Investigador Principal: João de Almeida Lopes da Fonseca

Estudo Clínico Observacional (EPI-ASTHMA) . AstraZeneca . 2021

Effect of a Mobile App on Improving Asthma Control in Adolescents and Adults With Persistent Asthma: A Pilot Randomized Multicentre, Superiority Clinical Trial (mINSPIRERS) - NCT05129527

Investigador Principal: João de Almeida Lopes da Fonseca

Ensaio Clínico Académico (mINSPIRERS) . 2021

Utilização em estudos observacionais do Registo de Asma Grave Portugal.

Investigador Principal: João de Almeida Lopes da Fonseca

Estudo Observacional Académico (RAG) . 2020

Clinical Research Collaboration Severe Heterogenous Asthma Research collaboration, Patient-centered (CRC SHARP).

Investigador Principal: João de Almeida Lopes da Fonseca

Estudo Clínico Observacional (SHARP) . European Respiratory Society . 2021

Multidimensional phenotyping of severe asthma patients and its impact on disease control and therapeutic response - analysis from the Portuguese Severe Asthma Registry.

Investigador Principal: João de Almeida Lopes da Fonseca

Estudo Clínico Observacional (RAG-SPP-GSK) . SPPneumologia . 2022

BREATHE - An oBservational, pRimary data study to characterize severe AsThma pHenotypes and assEss disease burden across the EUCAN region.

Investigador Principal: João de Almeida Lopes da Fonseca

Estudo Clínico Observacional (RAG-AZ-BREATHE) . AstraZeneca . 2022

Seroprevalence of SARS-CoV-2 and assessment of epidemiologic determinants in Portuguese municipal workers

Investigador Principal: Bernardo Manuel De Sousa Pinto

Estudo Clínico Académico (SARS-CoV-2) . 2021

Efficiency in Spine Care ? Assessing outcomes and costs to inform healthcare improvement

Investigador Principal: João de Almeida Lopes da Fonseca

Estudo Clínico Académico . 2022

Use of secondary data, health technology assessment methods and economic modelling applied to penicillin allergy

Investigador Principal: João de Almeida Lopes da Fonseca

Estudo Clínico Académico . 2020

Using different data sources for the identification of asthma patients and those at high risk of adverse outcomes

Investigador Principal: João de Almeida Lopes da Fonseca

Estudo Clínico Académico . 2020

Phenotypes of Chronic Diseases of the Airways: Towards Multidimensional Data -Driven Profiling

Investigador Principal: João de Almeida Lopes da Fonseca

Estudo Clínico Académico . 2020

Citar a publicação

Partilhar a publicação