Machine learning models based on clinical indices and cardiotocographic features for discriminating asphyxia fetuses-Porto retrospective intrapartum study

Autores da FMUP
Participantes de fora da FMUP
- Ribeiro, M
- Nunes, I
- Castro, L
Unidades de investigação
Abstract
IntroductionPerinatal asphyxia is one of the most frequent causes of neonatal mortality, affecting approximately four million newborns worldwide each year and causing the death of one million individuals. One of the main reasons for these high incidences is the lack of consensual methods of early diagnosis for this pathology. Estimating risk-appropriate health care for mother and baby is essential for increasing the quality of the health care system. Thus, it is necessary to investigate models that improve the prediction of perinatal asphyxia. Access to the cardiotocographic signals (CTGs) in conjunction with various clinical parameters can be crucial for the development of a successful model. ObjectivesThis exploratory work aims to develop predictive models of perinatal asphyxia based on clinical parameters and fetal heart rate (fHR) indices. MethodsSingle gestations data from a retrospective unicentric study from Centro Hospitalar e Universitario do Porto de Sao Joao (CHUSJ) between 2010 and 2018 was probed. The CTGs were acquired and analyzed by Omniview-SisPorto, estimating several fHR features. The clinical variables were obtained from the electronic clinical records stored by ObsCare. Entropy and compression characterized the complexity of the fHR time series. These variables' contribution to the prediction of asphyxia perinatal was probed by binary logistic regression (BLR) and Naive-Bayes (NB) models. ResultsThe data consisted of 517 cases, with 15 pathological cases. The asphyxia prediction models showed promising results, with an area under the receiver operator characteristic curve (AUC) >70%. In NB approaches, the best models combined clinical and SisPorto features. The best model was the univariate BLR with the variable compression ratio scale 2 (CR2) and an AUC of 94.93% [94.55; 95.31%]. ConclusionBoth BLR and Bayesian models have advantages and disadvantages. The model with the best performance predicting perinatal asphyxia was the univariate BLR with the CR2 variable, demonstrating the importance of non-linear indices in perinatal asphyxia detection. Future studies should explore decision support systems to detect sepsis, including clinical and CTGs features (linear and non-linear).
Dados da publicação
- ISSN/ISSNe:
- 2296-2565, 2296-2565
- Tipo:
- Article
- Páginas:
- -
Frontiers in Public Health Frontiers Media S.A.
Documentos
- Não há documentos
Filiações
Keywords
- non-linear methods; neonatology; fetal heart rate; cardiotocography; perinatal asphyxia
Financiamento
Proyectos asociados
COVID-19: Monitorizar e planear com base no risco.
Investigador Principal: Cristina Maria Nogueira da Costa Santos
Estudo Observacional Académico (COVID-19) . 2020
Complexity Sciences applied to Cardiotocography
Investigador Principal: Cristina Maria Nogueira da Costa Santos
Estudo Clínico Académico . 2022
Citar a publicação
Ribeiro M,Nunes I,Castro L,Costa C,Henriques TS. Machine learning models based on clinical indices and cardiotocographic features for discriminating asphyxia fetuses-Porto retrospective intrapartum study. Front. Public Health. 2023. 11. 1099263. IF:5,200. (1).