Comparing Decentralized Learning Methods for Health Data Models to Nondecentralized Alternatives: Protocol for a Systematic Review

Data de publicação:

Autores da FMUP

  • José Alberto Da Silva Freitas

    Autor

Participantes de fora da FMUP

  • Diniz, JM
  • Vasconcelos, H
  • Souza, J
  • Rb-Silva, R
  • Ameijeiras-Rodriguez, C

Unidades de investigação

Abstract

Background: Considering the soaring health-related costs directed toward a growing, aging, and comorbid population, the health sector needs effective data-driven interventions while managing rising care costs. While health interventions using data mining have become more robust and adopted, they often demand high-quality big data. However, growing privacy concerns have hindered large-scale data sharing. In parallel, recently introduced legal instruments require complex implementations, especially when it comes to biomedical data. New privacy-preserving technologies, such as decentralized learning, make it possible to create health models without mobilizing data sets by using distributed computation principles. Several multinational partnerships, including a recent agreement between the United States and the European Union, are adopting these techniques for next-generation data science. While these approaches are promising, there is no clear and robust evidence synthesis of health care applications. Objective: The main aim is to compare the performance among health data models (eg, automated diagnosis and mortality prediction) developed using decentralized learning approaches (eg, federated and blockchain) to those using centralized or local methods. Secondary aims are comparing the privacy compromise and resource use among model architectures. Methods: We will conduct a systematic review using the first-ever registered research protocol for this topic following a robust search methodology, including several biomedical and computational databases. This work will compare health data models differing in development architecture, grouping them according to their clinical applications. For reporting purposes, a PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 2020 flow diagram will be presented. CHARMS (Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies)-based forms will be used for data extraction and to assess the risk of bias, alongside PROBAST (Prediction Model Risk of Bias Assessment Tool). All effect measures in the original studies will be reported. Results: The queries and data extractions are expected to start on February 28, 2023, and end by July 31, 2023. The research protocol was registered with PROSPERO, under the number 393126, on February 3, 2023. With this protocol, we detail how we will conduct the systematic review. With that study, we aim to summarize the progress and findings from state-of-the-art decentralized learning models in health care in comparison to their local and centralized counterparts. Results are expected to clarify the consensuses and heterogeneities reported and help guide the research and development of new robust and sustainable applications to address the health data privacy problem, with applicability in real-world settings. Conclusions: We expect to clearly present the status quo of these privacy-preserving technologies in health care. With this robust synthesis of the currently available scientific evidence, the review will inform health technology assessment and evidence-based decisions, from health professionals, data scientists, and policy makers alike. Importantly, it should also guide the development and application of new tools in service of patients' privacy and future research. Trial Registration: PROSPERO 393126; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=393126 International Registered Report Identifier (IRRID): PRR1-10.2196/45823

Dados da publicação

ISSN/ISSNe:
1929-0748, 1929-0748

JMIR Research Protocols  JMIR Publications Inc.

Tipo:
Review
Páginas:
-
Link para outro recurso:
www.scopus.com

Documentos

  • Não há documentos

Métricas

Filiações mostrar / ocultar

Keywords

  • decentralized learning; distributed learning; federated learning; centralized learning; privacy; health; health data; secondary data use; health data model; blockchain; health care; data science

Financiamento

Proyectos asociados

Stimulate continous monitoring in personal and physical health.

Investigador Principal: José Alberto da Silva Freitas

Estudo Observacional Académico (INNO4HEALTH) . FCT . 2021

Estudos de avaliação de exequibilidade, usabilidade e utilização de uma app para telemóvel para gestão da diabetes tipo 2.

Investigador Principal: José Alberto da Silva Freitas

Estudo Observacional Académico (FoodFriend) . FCT . 2022

Tendências nas Hospitalizações por Insuficiência Cardíaca durante um Período de Dezasseis Anos: Dados de Abrangência Nacional para Portugal

Investigador Principal: José Alberto da Silva Freitas

Estudo Clínico Académico (Hospitalizações IC) . 2022

Healthcare Human Resources and Quality Indicators: Approaches to Strengthening Primary Care.

Investigador Principal: José Alberto da Silva Freitas

Estudo Clínico Académico . 2022

A machine learning-based approach to support the assessment of clinical coded data quality in the context of Diagnosis-Related Groups classification systems

Investigador Principal: José Alberto da Silva Freitas

Estudo Clínico Académico . 2020

Citar a publicação

Partilhar a publicação