COVID-19 surveillance data quality issues: a national consecutive case series

Data de publicação: Data Ahead of Print:

Autores da FMUP

  • Cristina Maria Nogueira Da Costa Santos

    Autor

  • Ana Luisa Fernandes Neves Soares

    Autor

  • Ricardo João Cruz Correia

    Autor

  • Paulo Alexandre Azevedo Pereira Santos

    Autor

  • Matilde Filipa Monteiro Soares

    Autor

  • José Alberto Da Silva Freitas

    Autor

  • Fernanda Inês De Carvalho Pereira Ribeiro

    Autor

  • Teresa Sarmento Henriques

    Autor

  • Pedro Pereira Rodrigues

    Autor

  • Ana Margarida Barbosa Ribeiro Pereira

    Autor

  • João De Almeida Lopes Da Fonseca

    Autor

Unidades de investigação

Abstract

Objectives High-quality data are crucial for guiding decision-making and practising evidence-based healthcare, especially if previous knowledge is lacking. Nevertheless, data quality frailties have been exposed worldwide during the current COVID-19 pandemic. Focusing on a major Portuguese epidemiological surveillance dataset, our study aims to assess COVID-19 data quality issues and suggest possible solutions. Settings On 27 April 2020, the Portuguese Directorate-General of Health (DGS) made available a dataset (DGSApril) for researchers, upon request. On 4 August, an updated dataset (DGSAugust) was also obtained. Participants All COVID-19-confirmed cases notified through the medical component of National System for Epidemiological Surveillance until end of June. Primary and secondary outcome measures Data completeness and consistency. Results DGSAugust has not followed the data format and variables as DGSApril and a significant number of missing data and inconsistencies were found (eg, 4075 cases from the DGSApril were apparently not included in DGSAugust). Several variables also showed a low degree of completeness and/or changed their values from one dataset to another (eg, the variable 'underlying conditions' had more than half of cases showing different information between datasets). There were also significant inconsistencies between the number of cases and deaths due to COVID-19 shown in DGSAugust and by the DGS reports publicly provided daily. Conclusions Important quality issues of the Portuguese COVID-19 surveillance datasets were described. These issues can limit surveillance data usability to inform good decisions and perform useful research. Major improvements in surveillance datasets are therefore urgently needed-for example, simplification of data entry processes, constant monitoring of data, and increased training and awareness of healthcare providers-as low data quality may lead to a deficient pandemic control.

© Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

Dados da publicação

ISSN/ISSNe:
2044-6055, 2044-6055

BMJ Open  BMJ Publishing Group

Tipo:
Article
Páginas:
-
Link para outro recurso:
www.scopus.com

Citações Recebidas na Web of Science: 11

Citações Recebidas na Scopus: 14

Documentos

  • Não há documentos

Métricas

Filiações mostrar / ocultar

Keywords

  • COVID-19; information management; health informatics; epidemiology; public health; statistics & research methods

Financiamento

Proyectos asociados

Prevalence and Characterisation of Asthma Patients According to Disease Severity in Portugal (EPI-ASTHMA) - NCT05169619

Investigador Principal: João de Almeida Lopes da Fonseca

Estudo Clínico Observacional (EPI-ASTHMA) . AstraZeneca . 2021

Effect of a Mobile App on Improving Asthma Control in Adolescents and Adults With Persistent Asthma: A Pilot Randomized Multicentre, Superiority Clinical Trial (mINSPIRERS) - NCT05129527

Investigador Principal: João de Almeida Lopes da Fonseca

Ensaio Clínico Académico (mINSPIRERS) . 2021

Quality indicators in primary health care: validation and implementation of quality indicators as an assessment and comparison tool.

Investigador Principal: Paulo Alexandre Azevedo Pereira Santos

Estudo de Intervenção Académico (1st.IndiQare) . 2019

Utilização em estudos observacionais do Registo de Asma Grave Portugal.

Investigador Principal: João de Almeida Lopes da Fonseca

Estudo Observacional Académico (RAG) . 2020

Impacto da COVID-19 nas taxas de cesarianas por classificação de Robson nos hospitais portugueses.

Investigador Principal: Ricardo João Cruz Correia

Estudo Observacional Académico (Cesarianas) . 2020

Predição e análise do tipo de parto em gestantes portuguesas através de Redes Bayesianas.

Investigador Principal: Pedro Pereira Rodrigues

Estudo Observacional Académico (Redes Bayesianas) . 2021

Stimulate continous monitoring in personal and physical health.

Investigador Principal: José Alberto da Silva Freitas

Estudo Observacional Académico (INNO4HEALTH) . FCT . 2021

Predição do resultado neonatal baseado na idade gestacional e peso ao nascimento: uma graduação de risco para cenários de nascimento com poucos recursos.

Investigador Principal: Ricardo João Cruz Correia

Estudo Observacional Académico (NEONATAL) . 2019

COVID-19: Monitorizar e planear com base no risco.

Investigador Principal: Cristina Maria Nogueira da Costa Santos

Estudo Observacional Académico (COVID-19) . 2020

Hospitalização ou vigilância: ação precoce na orientação de pacientes com COVID-19.

Investigador Principal: Pedro Pereira Rodrigues

Estudo Observacional Académico (Orientação) . 2020

COVID-19 in portuguese non-hospitalized patients: evolution, burden of comorbidities and other determinants for severity.

Investigador Principal: Paulo Alexandre Azevedo Pereira Santos

Estudo Observacional Académico (Severity) . 2020

Dar voz aos médicos de família: um estudo qualitativo.

Investigador Principal: Paulo Alexandre Azevedo Pereira Santos

Estudo Observacional Académico (Voz) . 2020

Clinical Research Collaboration Severe Heterogenous Asthma Research collaboration, Patient-centered (CRC SHARP).

Investigador Principal: João de Almeida Lopes da Fonseca

Estudo Clínico Observacional (SHARP) . European Respiratory Society . 2021

Desenvolvimento de uma escala de risco COVID-19 através de uma análise I&D probabilística de Monte Carlo de forma a dotar o Hospital de Ovar de planos de contingência adaptados para gestão de casos de Pandemia. (COVID-19)

Investigador Principal: Ricardo João Cruz Correia

Estudo Clínico Académico (COVID-19) . FCT . 2020

iHIPI: Hiper-inflamação e perfil imunológico dos doentes com COVID-19 no Centro Hospitalar de Vila Gaia/Espinho

Investigador Principal: Matilde Filipa Monteiro Soares

Estudo Clínico Académico (iHIPI) . FCT . 2020

Excess mortality during COVID-19 in 5 european countries and a critique of mortality data analysis

Investigador Principal: Ricardo João Cruz Correia

Estudo Clínico Académico (Mortality) . 2020

Identifying problems in the appointment scheduling system of a major Portuguese public hospital - Is there room for improvement?

Investigador Principal: Pedro Pereira Rodrigues

Estudo Clínico Académico (Scheduling system) . 2020

Stress among Portuguese medical students: A national cross-sectional study

Investigador Principal: Paulo Alexandre Azevedo Pereira Santos

Estudo Clínico Académico (Stress) . 2020

COVID-19 patients followed in Portuguese Primary Care: a retrospective cohort study based on the national case series

Investigador Principal: Paulo Alexandre Azevedo Pereira Santos

Estudo Clínico Académico (COVID-19 Primary Care) . 2021

Stigma about mental disease in Portuguese medical students: a cross sectional study

Investigador Principal: Paulo Alexandre Azevedo Pereira Santos

Estudo Clínico Académico (Stigma) . 2020

The impact of Health Literacy on Knowledge and Attitudes towards preventive strategies against COVID- 19: a cross-sectional study

Investigador Principal: Paulo Alexandre Azevedo Pereira Santos

Estudo Clínico Académico . 2021

Congenital Heart Disease Detection Using Clinical Data and Auscultation Heart Sounds: a Machine Learning Approach

Investigador Principal: Pedro Pereira Rodrigues

Estudo Clínico Académico . 2021

Use of secondary data, health technology assessment methods and economic modelling applied to penicillin allergy

Investigador Principal: João de Almeida Lopes da Fonseca

Estudo Clínico Académico . 2020

A machine learning-based approach to support the assessment of clinical coded data quality in the context of Diagnosis-Related Groups classification systems

Investigador Principal: José Alberto da Silva Freitas

Estudo Clínico Académico . 2020

Using different data sources for the identification of asthma patients and those at high risk of adverse outcomes

Investigador Principal: João de Almeida Lopes da Fonseca

Estudo Clínico Académico . 2020

Phenotypes of Chronic Diseases of the Airways: Towards Multidimensional Data -Driven Profiling

Investigador Principal: João de Almeida Lopes da Fonseca

Estudo Clínico Académico . 2020

Citar a publicação

Partilhar a publicação