COVID-19 surveillance data quality issues: a national consecutive case series

Autores da FMUP
Unidades de investigação
Abstract
Objectives High-quality data are crucial for guiding decision-making and practising evidence-based healthcare, especially if previous knowledge is lacking. Nevertheless, data quality frailties have been exposed worldwide during the current COVID-19 pandemic. Focusing on a major Portuguese epidemiological surveillance dataset, our study aims to assess COVID-19 data quality issues and suggest possible solutions. Settings On 27 April 2020, the Portuguese Directorate-General of Health (DGS) made available a dataset (DGSApril) for researchers, upon request. On 4 August, an updated dataset (DGSAugust) was also obtained. Participants All COVID-19-confirmed cases notified through the medical component of National System for Epidemiological Surveillance until end of June. Primary and secondary outcome measures Data completeness and consistency. Results DGSAugust has not followed the data format and variables as DGSApril and a significant number of missing data and inconsistencies were found (eg, 4075 cases from the DGSApril were apparently not included in DGSAugust). Several variables also showed a low degree of completeness and/or changed their values from one dataset to another (eg, the variable 'underlying conditions' had more than half of cases showing different information between datasets). There were also significant inconsistencies between the number of cases and deaths due to COVID-19 shown in DGSAugust and by the DGS reports publicly provided daily. Conclusions Important quality issues of the Portuguese COVID-19 surveillance datasets were described. These issues can limit surveillance data usability to inform good decisions and perform useful research. Major improvements in surveillance datasets are therefore urgently needed-for example, simplification of data entry processes, constant monitoring of data, and increased training and awareness of healthcare providers-as low data quality may lead to a deficient pandemic control.
© Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.
Dados da publicação
- ISSN/ISSNe:
- 2044-6055, 2044-6055
- Tipo:
- Article
- Páginas:
- -
- Link para outro recurso:
- www.scopus.com
BMJ Open BMJ Publishing Group
Citações Recebidas na Web of Science: 11
Citações Recebidas na Scopus: 14
Documentos
- Não há documentos
Filiações
Keywords
- COVID-19; information management; health informatics; epidemiology; public health; statistics & research methods
Financiamento
Proyectos asociados
Prevalence and Characterisation of Asthma Patients According to Disease Severity in Portugal (EPI-ASTHMA) - NCT05169619
Investigador Principal: João de Almeida Lopes da Fonseca
Estudo Clínico Observacional (EPI-ASTHMA) . AstraZeneca . 2021
Effect of a Mobile App on Improving Asthma Control in Adolescents and Adults With Persistent Asthma: A Pilot Randomized Multicentre, Superiority Clinical Trial (mINSPIRERS) - NCT05129527
Investigador Principal: João de Almeida Lopes da Fonseca
Ensaio Clínico Académico (mINSPIRERS) . 2021
Quality indicators in primary health care: validation and implementation of quality indicators as an assessment and comparison tool.
Investigador Principal: Paulo Alexandre Azevedo Pereira Santos
Estudo de Intervenção Académico (1st.IndiQare) . 2019
Utilização em estudos observacionais do Registo de Asma Grave Portugal.
Investigador Principal: João de Almeida Lopes da Fonseca
Estudo Observacional Académico (RAG) . 2020
Impacto da COVID-19 nas taxas de cesarianas por classificação de Robson nos hospitais portugueses.
Investigador Principal: Ricardo João Cruz Correia
Estudo Observacional Académico (Cesarianas) . 2020
Predição e análise do tipo de parto em gestantes portuguesas através de Redes Bayesianas.
Investigador Principal: Pedro Pereira Rodrigues
Estudo Observacional Académico (Redes Bayesianas) . 2021
Stimulate continous monitoring in personal and physical health.
Investigador Principal: José Alberto da Silva Freitas
Estudo Observacional Académico (INNO4HEALTH) . FCT . 2021
Predição do resultado neonatal baseado na idade gestacional e peso ao nascimento: uma graduação de risco para cenários de nascimento com poucos recursos.
Investigador Principal: Ricardo João Cruz Correia
Estudo Observacional Académico (NEONATAL) . 2019
COVID-19: Monitorizar e planear com base no risco.
Investigador Principal: Cristina Maria Nogueira da Costa Santos
Estudo Observacional Académico (COVID-19) . 2020
Hospitalização ou vigilância: ação precoce na orientação de pacientes com COVID-19.
Investigador Principal: Pedro Pereira Rodrigues
Estudo Observacional Académico (Orientação) . 2020
COVID-19 in portuguese non-hospitalized patients: evolution, burden of comorbidities and other determinants for severity.
Investigador Principal: Paulo Alexandre Azevedo Pereira Santos
Estudo Observacional Académico (Severity) . 2020
Dar voz aos médicos de família: um estudo qualitativo.
Investigador Principal: Paulo Alexandre Azevedo Pereira Santos
Estudo Observacional Académico (Voz) . 2020
Clinical Research Collaboration Severe Heterogenous Asthma Research collaboration, Patient-centered (CRC SHARP).
Investigador Principal: João de Almeida Lopes da Fonseca
Estudo Clínico Observacional (SHARP) . European Respiratory Society . 2021
Desenvolvimento de uma escala de risco COVID-19 através de uma análise I&D probabilística de Monte Carlo de forma a dotar o Hospital de Ovar de planos de contingência adaptados para gestão de casos de Pandemia. (COVID-19)
Investigador Principal: Ricardo João Cruz Correia
Estudo Clínico Académico (COVID-19) . FCT . 2020
iHIPI: Hiper-inflamação e perfil imunológico dos doentes com COVID-19 no Centro Hospitalar de Vila Gaia/Espinho
Investigador Principal: Matilde Filipa Monteiro Soares
Estudo Clínico Académico (iHIPI) . FCT . 2020
Excess mortality during COVID-19 in 5 european countries and a critique of mortality data analysis
Investigador Principal: Ricardo João Cruz Correia
Estudo Clínico Académico (Mortality) . 2020
Identifying problems in the appointment scheduling system of a major Portuguese public hospital - Is there room for improvement?
Investigador Principal: Pedro Pereira Rodrigues
Estudo Clínico Académico (Scheduling system) . 2020
Stress among Portuguese medical students: A national cross-sectional study
Investigador Principal: Paulo Alexandre Azevedo Pereira Santos
Estudo Clínico Académico (Stress) . 2020
COVID-19 patients followed in Portuguese Primary Care: a retrospective cohort study based on the national case series
Investigador Principal: Paulo Alexandre Azevedo Pereira Santos
Estudo Clínico Académico (COVID-19 Primary Care) . 2021
Stigma about mental disease in Portuguese medical students: a cross sectional study
Investigador Principal: Paulo Alexandre Azevedo Pereira Santos
Estudo Clínico Académico (Stigma) . 2020
The impact of Health Literacy on Knowledge and Attitudes towards preventive strategies against COVID- 19: a cross-sectional study
Investigador Principal: Paulo Alexandre Azevedo Pereira Santos
Estudo Clínico Académico . 2021
Congenital Heart Disease Detection Using Clinical Data and Auscultation Heart Sounds: a Machine Learning Approach
Investigador Principal: Pedro Pereira Rodrigues
Estudo Clínico Académico . 2021
Use of secondary data, health technology assessment methods and economic modelling applied to penicillin allergy
Investigador Principal: João de Almeida Lopes da Fonseca
Estudo Clínico Académico . 2020
A machine learning-based approach to support the assessment of clinical coded data quality in the context of Diagnosis-Related Groups classification systems
Investigador Principal: José Alberto da Silva Freitas
Estudo Clínico Académico . 2020
Using different data sources for the identification of asthma patients and those at high risk of adverse outcomes
Investigador Principal: João de Almeida Lopes da Fonseca
Estudo Clínico Académico . 2020
Phenotypes of Chronic Diseases of the Airways: Towards Multidimensional Data -Driven Profiling
Investigador Principal: João de Almeida Lopes da Fonseca
Estudo Clínico Académico . 2020
Citar a publicação
Costa C,Neves AL,Correia R,Santos P,Monteiro M,Freitas A,Ribeiro I,Henriques TS,Rodrigues PP,Costa A,Pereira AM,Fonseca JA. COVID-19 surveillance data quality issues: a national consecutive case series. BMJ Open. 2021. 11. (12):e047623. IF:3,006. (2).