Consistent trajectories of rhinitis control and treatment in 16,177 weeks: The MASK-air® longitudinal study

Data de publicação: Data Ahead of Print:

Autores da FMUP

  • Bernardo Manuel De Sousa Pinto

    Autor

  • Ana Isabel Alves De Sá E Sousa

    Autor

  • Rafael José Monteiro Da Silva Vieira

    Autor

  • Rita Da Silva Amaral

    Autor

  • João De Almeida Lopes Da Fonseca

    Autor

Participantes de fora da FMUP

  • Schünemann, HJ
  • Anto, JM
  • Klimek, L
  • Czarlewski, W
  • Mullol, J
  • Pfaar, O
  • Bedbrook, A
  • Brussino, L
  • Kvedariene, V
  • Larenas Linnemann, DE
  • Okamoto, Y
  • Ventura, MT
  • Agache, I
  • Ansotegui, IJ
  • Bergmann, KC
  • Bosnic Anticevich, S
  • Canonica, GW
  • Cardona, V
  • Carreiro Martins, P
  • Casale, T
  • Cecchi, L
  • Chivato, T
  • Chu, DK
  • Cingi, C
  • Costa, E.
  • Cruz, AA
  • Del Giacco, S
  • Devillier, P
  • Eklund, P
  • Fokkens, WJ
  • Gemicioglu, B
  • Haahtela, T
  • Ivancevich, JC
  • Ispayeva, Z
  • Jutel, M
  • Kuna, P
  • Kaidashev, I
  • Khaitov, M
  • Kraxner, H
  • Laune, D
  • Lipworth, B
  • Louis, R
  • Makris, M
  • Monti, R
  • Morais Almeida, M
  • M?sges, R
  • Niedoszytko, M
  • Papadopoulos, NG
  • Patella, V
  • Nhan, PT
  • Regateiro, FS
  • Reitsma, S
  • Rouadi, PW
  • Samolinski, B
  • Sheikh, A
  • Sova, M
  • Todo Bom, A
  • Taborda Barata, L
  • Toppila Salmi, S
  • Sastre, J
  • Tsiligianni, I
  • Valiulis, A
  • Vandenplas, O
  • Wallace, D
  • Waserman, S
  • Yorgancioglu, A
  • Zidarn, M
  • Zuberbier, T
  • Bousquet, J

Unidades de investigação

Abstract

Introduction: Data from mHealth apps can provide valuable information on rhinitis control and treatment patterns. However, in MASK-air (R), these data have only been analyzed cross-sectionally, without considering the changes of symptoms over time. We analyzed data from MASK-air (R) longitudinally, clustering weeks according to reported rhinitis symptoms. Methods: We analyzed MASK-air (R) data, assessing the weeks for which patients had answered a rhinitis daily questionnaire on all 7days. We firstly used k-means clustering algorithms for longitudinal data to define clusters of weeks according to the trajectories of reported daily rhinitis symptoms. Clustering was applied separately for weeks when medication was reported or not. We compared obtained clusters on symptoms and rhinitis medication patterns. We then used the latent class mixture model to assess the robustness of results. Results: We analyzed 113,239 days (16,177 complete weeks) from 2590 patients (mean age +/- SD = 39.1 +/- 13.7 years). The first clustering algorithm identified ten clusters among weeks with medication use: seven with low variability in rhinitis control during the week and three with highly-variable control. Clusters with poorly-controlled rhinitis displayed a higher frequency of rhinitis co-medication, a more frequent change of medication schemes and more pronounced seasonal patterns. Six clusters were identified in weeks when no rhinitis medication was used, displaying similar control patterns. The second clustering method provided similar results. Moreover, patients displayed consistent levels of rhinitis control, reporting several weeks with similar levels of control. Conclusions: We identified 16 patterns of weekly rhinitis control. Co-medication and medication change schemes were common in uncontrolled weeks, reinforcing the hypothesis that patients treat themselves according to their symptoms. [GRAPHICS] .

© 2022 The Authors. Allergy published by European Academy of Allergy and Clinical Immunology and John Wiley & Sons Ltd.

Dados da publicação

ISSN/ISSNe:
0105-4538, 1398-9995

ALLERGY  Wiley-Blackwell Publishing Ltd

Tipo:
Article
Páginas:
968-983
Link para outro recurso:
www.scopus.com

Citações Recebidas na Web of Science: 4

Citações Recebidas na Scopus: 13

Documentos

  • Não há documentos

Métricas

Filiações mostrar / ocultar

Keywords

  • mobile health; patient-reported outcomes; real-world data; rhinitis

Financiamento

Proyectos asociados

Prevalence and Characterisation of Asthma Patients According to Disease Severity in Portugal (EPI-ASTHMA) - NCT05169619

Investigador Principal: João de Almeida Lopes da Fonseca

Estudo Clínico Observacional (EPI-ASTHMA) . AstraZeneca . 2021

Effect of a Mobile App on Improving Asthma Control in Adolescents and Adults With Persistent Asthma: A Pilot Randomized Multicentre, Superiority Clinical Trial (mINSPIRERS) - NCT05129527

Investigador Principal: João de Almeida Lopes da Fonseca

Ensaio Clínico Académico (mINSPIRERS) . 2021

Utilização em estudos observacionais do Registo de Asma Grave Portugal.

Investigador Principal: João de Almeida Lopes da Fonseca

Estudo Observacional Académico (RAG) . 2020

Clinical Research Collaboration Severe Heterogenous Asthma Research collaboration, Patient-centered (CRC SHARP).

Investigador Principal: João de Almeida Lopes da Fonseca

Estudo Clínico Observacional (SHARP) . European Respiratory Society . 2021

Seroprevalence of SARS-CoV-2 and assessment of epidemiologic determinants in Portuguese municipal workers

Investigador Principal: Bernardo Manuel De Sousa Pinto

Estudo Clínico Académico (SARS-CoV-2) . 2021

Efficiency in Spine Care ? Assessing outcomes and costs to inform healthcare improvement

Investigador Principal: João de Almeida Lopes da Fonseca

Estudo Clínico Académico . 2022

Use of secondary data, health technology assessment methods and economic modelling applied to penicillin allergy

Investigador Principal: João de Almeida Lopes da Fonseca

Estudo Clínico Académico . 2020

Using different data sources for the identification of asthma patients and those at high risk of adverse outcomes

Investigador Principal: João de Almeida Lopes da Fonseca

Estudo Clínico Académico . 2020

Phenotypes of Chronic Diseases of the Airways: Towards Multidimensional Data -Driven Profiling

Investigador Principal: João de Almeida Lopes da Fonseca

Estudo Clínico Académico . 2020

Citar a publicação

Partilhar a publicação