How can artificial intelligence be used for peptidomics?

Data de publicação: Data Ahead of Print:

Autores da FMUP

  • Joaquim Adelino Correia Ferreira Leite Moreira

    Autor

Participantes de fora da FMUP

  • Perpetuo, L
  • Klein, J
  • Ferreira, R
  • Guedes, S
  • Amado, F
  • Silva, AMS
  • Thongboonkerd, V
  • Vitorino, R.

Unidades de investigação

Abstract

Introduction Peptidomics is an emerging field of omics sciences using advanced isolation, analysis, and computational techniques that enable qualitative and quantitative analyses of various peptides in biological samples. Peptides can act as useful biomarkers and as therapeutic molecules for diseases Areas covered The use of therapeutic peptides can be predicted quickly and efficiently using data-driven computational methods, particularly artificial intelligence (AI) approach. Various AI approaches are useful for peptide-based drug discovery, such as support vector machine, random forest, extremely randomized trees, and other more recently developed deep learning methods. AI methods are relatively new to the development of peptide-based therapies, but these techniques already become essential tools in protein science by dissecting novel therapeutic peptides and their functions (Figure 1). Expert opinion Researchers have shown that AI models can facilitate the development of peptidomics and selective peptide therapies in the field of peptide science. Biopeptide prediction is important for the discovery and development of successful peptide-based drugs. Due to their ability to predict therapeutic roles based on sequence details, many AI-dependent prediction tools have been developed (Figure 1).

Dados da publicação

ISSN/ISSNe:
1478-9450, 1744-8387

Expert Review of Proteomics  Taylor and Francis Ltd.

Tipo:
Review
Páginas:
527-556
Link para outro recurso:
www.scopus.com

Citações Recebidas na Web of Science: 3

Citações Recebidas na Scopus: 9

Documentos

  • Não há documentos

Métricas

Filiações mostrar / ocultar

Keywords

  • Artificial intelligence; peptides; computational; proteomics; software

Financiamento

Proyectos asociados

Estudo do tratamento da doença valvular aórtica.

Investigador Principal: Joaquim Adelino Correia Ferreira Leite Moreira

Estudo Observacional Académico (AORTA) . UniC . 2019

Eficácia da transposição de um pedículo adiposo pericárdico sobre o enfarte de miocárdio em pacientes (ensaio AGTP II)

Investigador Principal: Joaquim Adelino Correia Ferreira Leite Moreira

Ensaio Clínico Académico (Ensaio AGTP II) . 2019

Early Dual Antiplatelet Therapy versus Aspirin Monotherapy after Coronary Artery Bypass Surgery: survival and safety outcomes

Investigador Principal: Joaquim Adelino Correia Ferreira Leite Moreira

Estudo Clínico Académico (Bypass) . 2020

Early and Midterm Outcomes following Aortic Valve Replacement with Mechanical versus Bioprosthetic Valves in Patients aged 50 to 70 Years

Investigador Principal: Joaquim Adelino Correia Ferreira Leite Moreira

Estudo Clínico Académico (Aortic Valve Replacemen) . 2020

Impacto clínico e hemodinâmico da substituição cirúrgica da válvula aórtica por biopróteses de última geração

Investigador Principal: Joaquim Adelino Correia Ferreira Leite Moreira

Estudo Clínico Académico . 2020

Condicionamento isquémico cardíaco remoto como adjuvante da revascularização miocárdia na doença coronário aguda

Investigador Principal: Joaquim Adelino Correia Ferreira Leite Moreira

Estudo Clínico Académico . 2020

Citar a publicação

Partilhar a publicação